
Hey! I’m Jedda.

I’m a CISSP and technology & information security consultant from
Melbourne Australia, where I specialise in Apple platform security & PKI.

Outside of work I’m a girl dad and I love college football - go Utes!
It’s somewhere around 3 or 4am local time for me, so ☕ 🆙

📡 Network Relay - just a HTTP proxy?

• Spoiler alert; a Network Relay is a HTTP proxy

• So much more than that, and is the result of decades of iteration and convergence

• Rooted in transformative protocols and technologies such as QUIC and MASQUE

In this session:

• Talk a little about the history of HTTP, proxying and how this makes Network Relay possible

• Touch on and show how a Network Relay works, both technically and to a user in macOS

• Discuss the differences between traditional VPN and remote access and Network Relays

🐇 Network Relay - a classic rabbit hole topic
• End user experience & OS

• MDM deployment & lifecycle

• Network infrastructure, routing & protocols (TCP, UDP, QUIC)

• Server infrastructure (Relays are “web” servers and can be scaled as such)

• PKI & Cryptography (TLS, key exchange, trust & identity, ACME & managed device attestation)

• User privacy concepts (oblivious HTTP & DNS)

• Moving target - lots of ongoing work at the IETF (MASQUE working group)

• This session will touch on some pieces of these and zip right by others at speed
- if this topic interests you, there is so much more to learn and discuss

A (very abridged) history lesson on HTTP

🌐 HTTP/1.x

• HTTP/1.0 originally introduced as a HyperText Transfer Protocol - primarily used to fetch static
documents; text, images - one resource at a time

• HTTP/1.1 introduded connection persistence and the concept of pipelining

• Pipelining allowed queuing of resources within a single TCP connection to the an origin server

• HTTP/1.1 also first introduced the CONNECT verb which enabled early proxying scenarios

🌐 HTTP/1.x

🌐 HTTP/2

• Moved from an unstructured textual to a structured binary framed format

• Introduced multiplexing via individual streams on a single connection

• Multiplexing improves performance and solves many of the HoL blocking issues at the
application layer

• HTTP/2 remains based on TCP and we still see HoL at the transport layer - this is exacerbated
on lossy links

🌐 HTTP/2

🌐 HTTP/3 & QUIC
• HTTP/3 moves transport to QUIC:

• Based on UDP which eliminates transport layer HoL blocking

• Integrates and mandates TLS1.3 encryption

• More advanced congestion control, true independence of streams & connection migration

• Faster connection establishment through a single handshake (& session resumption)

• HTTP/3 more resilient than HTTP/2 but not always more performant due to user-space vs
kernel implementations and CPU cost for additional cryptographic operations

• This will likely improve further over time as implementations are further optimised

🔐 What is a Network Relay?
• A Network Relay is a HTTP proxy that supports both CONNECT (Extended) and MASQUE:

• CONNECT used to tunnel TCP traffic (including HTTP/1.1 & HTTP/2)

• MASQUE (CONNECT-UDP) used to tunnel UDP traffic (including QUIC & HTTP/3)

• Expected to run across HTTP/3 and QUIC with fallback to HTTP/2

• By being transported using QUIC, gets many of the performance benefits for free

• OS matches traffic based on subdomains and FQDN - similar to VPN on Demand

• Can (& should) use certificate authentication for Client mutual TLS with the Relay
- this includes ACME & Managed Device Attestation identities

🔐 What is a Network Relay?

GET /.well-known/masque/udp/api-safari-aapse2c.smoot.apple.com/443/ HTTP/2

🔐 Traditional VPNs on Apple platforms
• Lots of examples of these, from OS integrated IPSec and IKEv2 to 3rd party agent based

• Often require interactive authentication from end users - some even require “self service” login
to VPN portals to generate individual configuration files. Can be hard to deploy via MDM.

• For the most part, VPNs necessitate:

• virtual network interface and tunnel establishment

• session key agreement and re-keying

• IP address allocation & changes to the system’s routing table

• changes to the system’s DNS resolution - sometimes split

• connection lifecycle; what comes up must come back down

💖 Why lean in and love Network Relay
• No IP addressing or routing table changes and management

• Built in security and encryption and agility via client-server negotiation

• Support for mTLS and attested device hardware identity for authentication

• Great performance and durability with QUIC - particularly on lossy networks

• Can work alongside other relays or even other VPNs

• Flexible traffic matching based on domain names

• Built in support for “per-App” relay across mixed deployment models

• Where the puck is going - Apple investing in this tech across their ecosystem and
at a standards level. Lots of contribution at the IETF and ongoing work

🌀 os26 - Post-quantum cryptography

Apple Support - Prepare your network for quantum-secure encryption in TLS
https://support.apple.com/en-us/122756

• iOS/iPadOS/macOS & visionOS 26 support the X25519MLKEM768 algorithm for hybrid
key exchange in TLS1.3 (via supported_groups in ClientHello)

• Requires server support (now supported in OpenSSL and BoringSSL)

• Used by default for all URLSession, and Network.framework connections (which
make up the vast majority of network calls)

• Supported by iCloud Private Relay, Network Relay, DNS over HTTPS & other
system services

• Supported by Envoy (needs explicit config via TLS ecdh_curves)

🌀 os26 - Post-quantum cryptography

Apple Support - Prepare your network for quantum-secure encryption in TLS
https://support.apple.com/en-us/122756

% nscurl --tls-diagnostics https://relay.credibly.cc --http3 --http3-prior-knowledge
Starting TLS Diagnostic

==

Negotiated TLS version (codepoint): 0x0304
Negotiated TLS key exchange group (name): X25519MLKEM768
Negotiated TLS ciphersuite (codepoint): 0x1302

==

🌀 os26 - Post-quantum cryptography

Apple Support - Prepare your network for quantum-secure encryption in TLS
https://support.apple.com/en-us/122756

Envoy Stats (‘:9901/stats’ admin listener)

listener.0.0.0.0_443.ssl.ciphers.TLS_AES_128_GCM_SHA256: 2
listener.0.0.0.0_443.ssl.ciphers.TLS_AES_256_GCM_SHA384: 15
listener.0.0.0.0_443.ssl.curves.X25519MLKEM768: 17
listener.0.0.0.0_443.ssl.handshake: 17
listener.0.0.0.0_443.ssl.versions.TLSv1.3: 17

🪄 Interested in learning more?

Jedda Wignall
Beneath the MASQUE - a dive into Network Relay technology on Apple platforms
https://jedda.me/beneath-the-masque-network-relay-on-apple-platforms/

• My recent article includes: more of the history and protocol fundamentals,

• Swift’s NERelay and NERelayManager vs com.apple.dnsSettings.managed,

• Intricacies around DNS flows and traffic matching,

• Practical examples of an open source Network Relay using Envoy (with more demos), and

• Some additional commentary on performance, privacy, obsfuctation and deployment models.

• #network-relay channel on the MacAdmins Slack - great place to discuss this emerging topic!

🙏

Thank you!
Questions?

Jedda Wignall
Beneath the MASQUE - a dive into Network Relay technology on Apple platforms
https://jedda.me/beneath-the-masque-network-relay-on-apple-platforms/

