
Notes

William Smith
Hi everyone!

Today, let's talk about making change happen.

It's election season here in the U.S., and many of you may not be happy with your party's choices.

I'd like to offer you some candidates that are all about change. They are AWK, SED, and GREP and together we can change anything!

William Smith
Look for my notes here.
(Click or hover.)

William Smith

Notes

william smith
jamf | @talkingmoose

Code snippets

jamf.it/asg

William Smith
I'm William Smith and I work for Jamf. You can find me in most forums and social media as "talkingmoose".

If you'd like to test out the code snippets I'll be showing, you'll find them on my GitHub gists page. You can scan the barcode or go to jamf.it/asg for "awk-sed-grep"

I'll also show this QR code at the end of my talk.

Notes

William Smith
Let's start off by talking about the battery in your laptops.

It's a smart battery.

By "smart" I mean it has some intelligence built in to report things like its health.

Notes

William Smith
I can report on a smart battery's health using a command line tool called "ioreg".

Let's see what that looks like here in CodeRunner.

I'll type out my "ioreg" command and filter for "AppleSmartBattery".

When I click "Run", it gives me a long list of attributes and their values. What I'm looking for is here at the bottom: CycleCount.

My laptop battery has cycled through the equivalent of 116 full battery charges.

That's a great indicator of health because Apple says most batteries today have a maximum cycle count of about a thousand. Then it's time to replace your laptop. My laptop's nowhere near the end of its usefulness.

Notes

William Smith
I want to report on the cycle count in my management system, and specifically I want that "116" number.

I need to whittle down all this information.

So, I turn to my old standby "grep".

I'll pipe the output of my "ioreg" command into "grep" and tell it to give me all the lines that contain "CycleCount".

When I run that command, I see what I'm after at the end of the output.

That's great!

Notes

William Smith
Now, how do I get just that "116" number without the "CycleCount = "?

A quick Google search along with some trial and error and I come up with an awk command that seems to work.

I pipe the output of my grep command into it — "print $3".

I run the command, and behold! I have just the number appearing at the end of my output.

Notes

Notes

William Smith
But I still have all this junk that's coming along for the ride.

How do I get rid of it?

Well, one thing I notice is all that junk is between curly braces. How do I get rid of everything between the curly brackets including the curly braces themselves?

Notes

William Smith
Google to the rescue again, right?

I find a sed command. It's short and sweet and all I have to do is modify it a little to look for curly braces.

Again, I pipe the output from awk into it and run it. That's exactly what I need!

Notes

William Smith
There I've got it! AWK, SED, and GREP working together to give me the information I'm after.

What more could there be for me to say! Right?

Notes

sed /{.*}/d

ioreg -r -c "AppleSmartBattery" | grep -w
"CycleCount" | awk '{ print $3 }' |

William Smith
I'm actually here today to help you not write something like this.

When I look at what I've done, I see two fundamental problems.

I consider one of them to be much more important than the other.

Notes

sed /{.*}/dioreg -r -c "AppleSmartBattery" | grep -w "CycleCount" | awk '{ print $3 }' |ioreg -r -c "AppleSmartBattery" | grep -w "CycleCount" | awk '{ print $3 }' | sed /{.*}/d

William Smith
The first thing someone who's been scripting a while might point out is that it's inefficient.

I'm running a total of four commands here — the ioreg command to get me the information I need and then three more commands just to delete the data I don't need.

Notes

ioreg -r -c "AppleSmartBattery" | grep -w "CycleCount" | awk '{ print $3 }' | sed /{.*}/d

ioreg -r -c "AppleSmartBattery" | awk -F ' = ' '/"CycleCount" = / { print $2 }'
just awk:

ioreg -r -c "AppleSmartBattery" | sed -e '/"CycleCount" =/!d' -e 's/.* = //'
just sed:

ioreg -l | grep -e "\"CycleCount\" = " | grep -o "\d*"
ioreg -r -c "AppleSmartBattery" | grep -e "\"CycleCount\" = " | grep -o "\d*"
just grep:

William Smith
Truth be told, I could've used just awk... or just sed... or just grep... to do the same thing.

And if I used a slightly different and shorter ioreg command, my grep commands are even shorter.

Fewer commands improves efficiency, right?

For folks who measure the success of their commands by how short they are, I submit they're being a bit disingenuous these days.

I often hear them say, "Fewer commands means I'm saving processor time."

And that's true! But how important is that today?

Notes

NASA
Guidance computer

Sent mankind to the moon on
Apollo 11 spacecraft in 1969

12,250 flops/sec

William Smith
NASA sent men to the moon in 1969 using a guidance computer running at slightly over 12,000 flops per second.

A "flop" is a "floating point operation". Think of it as how fast a computer can crunch numbers.

Notes

Cray-2
Supercomputer

The most power computer
built in 1985

1.9 billion flops/sec

William Smith
Sixteen years later in 1985, the Cray-2 supercomputer was the fastest computer in the world running at 1.9 billion flops per second — a huge leap over 12,000 flops.

That's a "2" followed by nine zeroes.

And it was the first Cray computer to run Unix, which we're all running on our laptops here.

Notes

Smartphone
Pocket computer

Today’s most ubiquitous
computer platform

2 teraflops/sec

William Smith
Nearly 20 years later, in our pockets today, our phones are running Unix-like operating systems on processors that are thousands of times faster than the Cray-2 at 2 teraflops per second.

That's a "2" followed by 12 zeroes.

Notes

Macbook Pro
Laptop computer

Today’s high end Apple
product for designers,
scientists, and engineers in
2024

4.6 teraflops/sec

William Smith
High-end laptop computers are running close to twice that speed at 4.6 teraflops per second.

That's just a personal computer not a modern day mainframe.

Notes

Xbox Series X
Gaming system

Microsoft’s premium out-of-
the-box gaming system
introduced 2020

12 teraflops/sec

William Smith
We're still getting more powerful when we consider gaming systems as computers.

Microsoft's Xbox Series X systems are running around 12 teraflops.

Notes

Frontier
Modern
supercomputer

HPE’s Cray EX supercomputer
rated as the fastest computer in
the world in 2022

1.102 exaflops/sec

William Smith
And to round out the list, the United States Department of Energy is running a modern Cray supercomputer — HP's Frontier, which in 2022 was the world's fastest supercomputer running at 1.1 exaflops.

We're just completely skipping petaflops at this point. An exaflop is a "1" followed by 18 zeroes.

Guess what it's running! A souped up flavor of SUSE Linux.

Notes

flops / sec

0

3000000000000

6000000000000

9000000000000

12000000000000

NASA
Guidance Computer

1969

Cray-2
Supercomputer

1985

Smartphone
2024

MacBook Pro
2024

Xbox
Series X

2024

William Smith
If we look at all these computers with the exception of the Frontier, which is somewhere up on the roof, we see that processor speed these days for what we do as administrators just isn't as important as it used to be.

NASA's guidance computer got the job done. It wasn't going to fly the astronauts any faster and reduce the three days it took them to get to the moon.

These days, it takes milliseconds to run commands when we're doing all the calculations locally.

If anything's going to affect the speed of our scripts, it's going to be the network. Things like curl commands where we rely on the speed of traffic and the responsiveness of remote servers.

So, while it's not a bad practice to be efficient and use as few commands as possible, processor speed isn't a good reason anymore. We're simply not bound by hardware.

So, what is a good reason?

Notes

ioreg -r -c "AppleSmartBattery" | grep -w "CycleCount" | awk '{ print $3 }' | sed /{.*}/d

William Smith
Let's take a look at that ioreg command I put together to get the number of charging cycles.

Here's why you want to reduce commands:

Every command you introduce is a single point of failure.

Or...

Every command you introduce becomes one more variable you have to troubleshoot when your script doesn't work.

When writing scripts, you sometimes need to forget the big picture and pay more attention to the details.

Notes

William Smith
Normally, we'd say it's a bad thing when you can't see the forest for the trees.

Notes

William Smith
But what about when you're way up here?

Should you really be focusing on the big picture at the moment? Taking in the scenery?

Sometimes that's not what you should do, and I think that applies to script writing.

Notes

William Smith
Author Chuck Palahniuk says, "The trick to forgetting the big picture is to look at everything close up."

Don't concentrate on how big the problem is. Take one step at a time and make sure you get it as right as possible.

Many steps done well now will let you enjoy the big picture later.

Notes

̣ Origins

̣ What they have in common

̣ When to use each

̣ Syntax

William Smith
My goal for this presentation isn't to read you the man pages for awk, sed, and grep but rather to teach you how to fish.

Some of you may use these tools every day, and others of you may only use them just once in a while.

I think it's important to understand why awk, sed, and grep were made in the first place. Knowing that might give you some understanding in why they behave the way they do.

If you've ever used them in your scripts, you know the syntax for writing them can be confusing, but you might be surprised at a few things they have in common with each other.

When you know how they're alike, then you'll get a better understanding of when you'd use each one.

And I'll show some examples and talk about their syntaxes. It's very important you understand what you're looking at, so you can practice the art of script wizardry rather than script sorcery.

So now, let's travel back in time to just before the Unix epoch...

Notes

‘The most user-hostile editor ever created’
— Peter H. Salus, computer historian

William Smith
Not "ed". EE-DEE.

"The most user-hostile editor ever created," says computer historian Peter Salus.

Next month — August 2024 — ed turns 55. Here in the U.S., that means it can qualify for the senior citizen discount at McDonald's.

Notes

William Smith
Ed was written by this man — Ken Thompson.

Does anyone know who he is?

Notes

William Smith
He's one of the co-creators of Unix.

Ken is 81 today and still with us. If you do the calculation, he wrote Unix when he was 26.

Ed is the first text editor ever made for Unix and it's available on practically all Unix systems. It's on all your laptops right now.

So, why does ed have this reputation as "user-hostile"?

Notes

William Smith
Well, let's find out.

I have Terminal running, and this is an example from ed’s Wikipedia page.

To start ed, just type it into Terminal and press return.

I'm in ed now.

Notes

William Smith
All ed commands are single-letter characters, so, I'll press "a" to append.

Then I'll type a couple of sentences.

Notes

William Smith
Now, I type period to exit "append" mode.

Of course! Why not period to mean exit append mode?

Notes

William Smith
Now, I'll type "2i".

The "i" means "insert". Apparently, "append" means "insert at the end".

The "2" means I'm going place my cursor — if I had a cursor — at the beginning of line 2 and start inserting there.

Notes

William Smith
I'm going to insert a blank line here and then type "period" again to exit "insert" mode.

Notes

William Smith
Now, I'll type ",l".

I'm telling ed to display or "list" what I've typed so far.

Notes

William Smith
There you go.

You might notice all my lines end with a dollar sign. That's to let you know it's the end of the line.

Notes

William Smith
Now, I'll type "w text".

"W" means write and "text" is the name of the file I'm writing to.

This is how I save my work.

Notes

William Smith
When I press return, ed writes the file to my current folder, which is my home folder.

If I were to look, I'd see it there now.

And notice ed actually gave me some feedback for once — "63". That's the size of my file in bytes.

So, let's keep going.

Remember, I inserted a blank line before line 2. That means line two is now line three.

I need to fix that.

Notes

William Smith
Remember, all ed commands are single letters.

I'm telling it I want to replace the word "two" with the word "three".

Notes

William Smith
Now, let's see what my text looks like.

Again, I type ",l".

And now, line three says, "This is line number three."

Notes

William Smith
Let's type "w text" again to write my buffer to my file and save my work.

And this time I see that changing a three-letter word to a five-letter word has increased the size of my file by 2 bytes.

I can get out of ed by typing "q" to quit.

Notes

? = error
‘The experienced user will know what is wrong.’

William Smith
You saw me type everything correctly, but had you seen me mistype something, ed would've responded with just a question mark.

A question mark means "error".

So, what do you do when you receive an error?

According to some documentation, when one receives this error, "The experienced user will know what is wrong."

...

Yeah, ed seems like a pretty harsh command line tool. But why is it that way?

Notes

William Smith
Ed was written by Ken Thompson at MIT in Berkley, California. He also wrote the first Unix operating system.

And he wrote both on a system like — the PDP-7. Here's what it looked like.

Do you see anything unusual about it? Something missing maybe?

There's no monitor! Early computers didn't output to screen. Instead, they output to paper on something called a Teletype, which is that typewriter-looking device to the right.

And you didn't interact with computers back then like we do today. Instead, you'd write a program — probably by hand. Then you'd type your program on the Teletype where it would act like a typewriter and show you what you just typed but at the same time punch a tape that could be fed back through the Teletype and into the computer as a program.

If you've ever written a script, imagine having to type your entire script before you could actually run and test it.

Notes

non-interactive
‘Watch your step.’

William Smith
The key point to all of this is that most computers 55 years ago were non-interactive.

ed was written where it was expected to be programmed with everything it needed to do and then do it all at once.

Quickly — so you could get off the computer to let someone else get on to run their program.

That's why it seems so user-hostile. It wasn't designed to give us immediate feedback like we're used to today.

Like our tightrope walker while ago, if you didn't pay attention to each step, you were in for a bad time.

Notes

William Smith
Those teletype machines were later replaced by these.

They're not computers. They're terminals. Sometimes, they were called glass teletypes.

Unix was written to support time-sharing, which back then meant supporting multiple users accessing the mainframe — giving each user little slices of time.

Terminals meant you no longer had to sit in front of the mainframe, but you could work anywhere in the office.

But press a key on the terminal's keyboard, and the signal literally had to travel back to the mainframe and then come back to the terminal to appear on the screen. It could get pretty slow when multiple users were trying to use the system at the same time.

Notes

William Smith
What I'm showing you here is a VT100 terminal — a smart terminal that could run a program called a shell.

Guess who wrote the first Unix shell!

Ken Thompson.

Guess what the shell running on a smart terminal allowed you to do!

It allowed you to run programs locally instead of back and forth with the mainframe. And it allowed you to script them.

Now, everything just sped up!

And this helped make it possible for those programs to become very specialized.

Notes

‘The world is your burrito.’
interactive

William Smith
We're finally in the realm where we can interact with our data-processing commands in real time — if we choose — or script them when we need to process data over and over again.

Now, we need new tools to take advantage of all this.

Notes

1970

Unix epoch, January 1

William Smith
Let's see what happened over the course of time.

I've marked the Unix epoch, which is January 1, 1970. That's the date where Unix's clock starts at 0 seconds.

I've already talked about ed, written in 1969.

Notes

1969 1970

ed
Ken Thompson
First Unix editor

Unix epoch, January 1

William Smith
I've already talked about ed, written in 1969.

Notes

1969 1970 1973

ed
Ken Thompson
First Unix editor

grep
Ken Thompson

global regular expression print

Unix epoch, January 1

William Smith
We'll find its direct descendant is grep, also written by Ken Thompson, in 1973.

"Grep" stands for "global regular expression print", but its original name was just "s" for "search". Remember ed commands were all just single letters and Ken Thompson liked that simplicity..

Now, I didn't mention it before, but ed supported regular expressions. And "regular expression" is actually part of grep's name. I'll explain in a little while why regex is so important to all these tools.

The reason Ken Thompson created grep is that ed couldn't handle large amounts of text. It was written for systems whose buffers were tiny.

Notes

1969 1970 1973

ed
Ken Thompson
First Unix editor

grep
Ken Thompson

global regular expression print

Unix epoch, January 1

1974

sed
Lee McMahon
stream editor

William Smith
Grep was very successful, and it inspired Lee McMahon to build on it to create gres (g-r-e-s), which stood for "global regular expression substitution".

Later, gres morphed into what we know today as sed, which is short for "stream editor". Sed took a key element from ed — its substitution syntax.

Notes

1969 1970 1973

ed
Ken Thompson
First Unix editor

grep
Ken Thompson

global regular expression print

Unix epoch, January 1

1974

sed
Lee McMahon
stream editor

William Smith
If we look back at the ed demonstration I showed you, you'll see it here. Remember, commands in ed are single letters — and "s" stands for "substitute". Here we're substituting the word "two" with "three".

Or instead of using a literal word like "two", I could provide a regular expression and match all sorts of patterns.

We're going to look at that pretty closely a little later.

Notes

1969 1970 1973 1974 1977

ed
Ken Thompson
First Unix editor

awk
Aho, Weinberger, and Kernighan

grep
Ken Thompson

global regular expression print

sed
Lee McMahon
stream editor

Unix epoch, January 1

William Smith
And awk is the successor to both grep and sed.

I consider it the ABBA of the Unix world because just like the pop supergroup of the 1970s, awk is named after its creators:

• Alfred Aho
• Peter Weinberger and
• Brian Kernighan

Aho, Weinberger, Kernighan — awk. Mama mia!

Notes

1969 1970 1973 1974 1977

ed
Ken Thompson
First Unix editor

awk
Aho, Weinberger, and Kernighan

grep
Ken Thompson

global regular expression print

sed
Lee McMahon
stream editor

Unix epoch, January 1

Search

Search
and replace

Text
Processor

William Smith
Whereas grep was designed to be a more powerful search and Sed was designed to be a more powerful search and replace, awk was designed to be a text processor from the beginning.

What it gets from ed is its ability to run not just one-liners but as a full programming language. And from grep and sed it gets similar regex support including much of the same syntax for matching regex patterns.

Notes

ed
grep

awk
sed

Unix philosophy
An approach to software
development that emphasizes
minimalism, modularism, and
reusability. It emphasizes code that
can be extended and maintained
by someone other than its creators.

It is antithetical to monolithic design.

• Write programs that do one thing and do it well.

• Write programs to work together.

• Write programs to handle text streams, because that
is a universal interface.

William Smith
Awk, sed, and grep are the trifecta command line toolset when we need to manipulate all sorts of text whether it's structured like CSV or log files or unstructured like text documents.

We can consider all these tools as filters to help us extract the data we have and turn it into the format we need.

If you're looking at this you might be wondering "Why three tools to replace one?"

I can tell it's very much in line with the Unix philosophy — something else Ken Thompson created.

The idea behind it is simple: Make programs that are minimal, modular, and maintainable by someone other than its creators.

It's been summarized as:

• Write programs that do one thing and do it well.
• Write programs to work together.
• Write programs to handle text streams, because that is a universal interface.

In other words, use plain text.

Awk, sed, and grep all read plain text and they all output plain text, which is why we can use them as standalone programs or together in scripts.

Notes

̣ Origins

̣ What they have in common

̣ When to use each

̣ Syntax

William Smith
So, AWK, SED, and GREP share a common origin story.

All three of them have probably been around longer than most us in this room. Most of us.

I think that's pretty amazing.

Sometimes I think, "None of us would be here right now if it weren't for Steve Jobs and Steve Wozniak, who founded Apple in 1976.

But neither would we be here right now if it weren’t Ken Thompson too in 1969.

It wouldn't be until 30 years later in 2001 that these giants would come together to make Mac OS X.

It's good to know your history because now we can look at why there was a need for awk, sed, and grep, and that they share some commonalities, which we'll look at next.

Notes

ed grep sed awk

plain text

numbers and calculations

file argument

one-letter commands

substitution

line-based editing

regular expressions

addressing

global by default

Similarities and differences in function

William Smith
When I explained how ed was written and then how awk, sed, and grep were born out of ed, I mentioned a few similarities they have in common.

Let's look at those again and a few of their differences as well.

Remember, awk, sed, and grep are really meant to succeed ed, so we should at least expect one or more of them can do what ed does.

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations

file argument

one-letter commands

substitution

line-based editing

regular expressions

addressing

global by default

Similarities and differences in function

William Smith
First, these are all text processors of some sort — specifically plain text, which is core to the Unix philosophy.

It's this common format that makes interoperability and data sharing between them possible.

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations ✘ ✘ ✘ ✔
file argument

one-letter commands

substitution

line-based editing

regular expressions

addressing

global by default

Similarities and differences in function

William Smith
But out of all these tools, awk included support for numbers and calculations.

If I needed to examine a CSV file that contains a list of cities and a range of temperatures over a week, I could use awk to create a list and calculate each city's median temperature.

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations ✘ ✘ ✘ ✔
file argument ✔ ✔ ✔ ✔
one-letter commands

substitution

line-based editing

regular expressions

addressing

global by default

Similarities and differences in function

William Smith
All of these tools support directly reading files on your computer as a means of standard input.

But not necessarily the same syntax for commands...

I think part of our frustration with understanding some command line tools is the differences in how you invoke a command to do something.

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations ✘ ✘ ✘ ✔
file argument ✔ ✔ ✔ ✔
one-letter commands

substitution

line-based editing

regular expressions

addressing

global by default

Similarities and differences in function

William Smith
Let's look back at that example from ed.

Insert. List. Write. Quit.

Those are all verbs. They take action. And when you act on something, it causes a noticeable change.

One of the reasons ed gained it "user-hostile" reputation was its terseness. It used single letters to represent all its commands.

We live in a GUI world today where our buttons say "Print", "Cancel" or "Save". They don't say "P", "C", and "S".

We don't have to struggle with remembering whether "S" means "save", "search", or "substitute".

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations ✘ ✘ ✘ ✔
file argument ✔ ✔ ✔ ✔
one-letter commands ✔ ✘ ✔ ✘
substitution ✔ ✘ ✔ ✔
line-based editing

regular expressions

addressing

global by default

Similarities and differences in function

Search

William Smith
Probably why folks struggle with sed is because it inherited ed's terseness.

Understanding just that one thing about sed might make it easier to understand.

And if I didn't make it clear earlier, when you think about it, grep has just one command, and that is "to search". It's always in search mode, so you never have to actually specify that you want to search.

That's likely why it's the first tool we think of when we need to use the command line to process some data.

We've been trained by software to "Find" then "Replace".

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations ✘ ✘ ✘ ✔
file argument ✔ ✔ ✔ ✔
one-letter commands ✔ ✘ ✔ ✘
substitution ✔ ✘ ✔ ✔
line-based editing

regular expressions

addressing

global by default

Similarities and differences in function

Search
and replace

Search

William Smith
So, for find/replace we probably want to use sed.

Again, it's a stream editor. It reads in one line of text at a time and then changes it.

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations ✘ ✘ ✘ ✔
file argument ✔ ✔ ✔ ✔
one-letter commands ✔ ✘ ✔ ✘
substitution ✔ ✘ ✔ ✔
line-based editing ✔ ✘ ✔ ✔
regular expressions

addressing

global by default

Similarities and differences in function

Search
and replace

Search

William Smith
That one line could part of a paragraph with many sentences.

Or it could be part of a book with twelve chapters, and each chapter is its own file.

But when we need to get down to individual pieces of data in each line like words or fields, that's when we want to go to awk.

That's how all these tools work — one line at a time — processing it and then moving on to the next until it reaches the end.

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations ✘ ✘ ✘ ✔
file argument ✔ ✔ ✔ ✔
one-letter commands ✔ ✘ ✔ ✘
substitution ✔ ✘ ✔ ✔
line-based editing ✔ ✘ ✔ ✔
regular expressions ✔ ✔ ✔ ✔
addressing

global by default

Similarities and differences in function

William Smith
Key to all of these tools is regular expressions.

I call it "RE-JEX". You might called it "RE-GEX".

"GIF". "JIF". I don't care. I call it "RE-JEX."

Regex is probably why we look at sed and awk as sorcery.

We haven't taken the time to understand it.

Notes

https://www.youtube.com/watch?v=Wc8Kpw0nEww

William Smith
Shameless plug:

I gave an introduction to regex back in 2020. You can find it on the MacAdmins Conference YouTube channel.

I'll provide the link in my notes for this session.

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations ✘ ✘ ✘ ✔
file argument ✔ ✔ ✔ ✔
one-letter commands ✔ ✘ ✔ ✘
substitution ✔ ✘ ✔ ✔
line-based editing ✔ ✘ ✔ ✔
regular expressions ✔ ✔ ✔ ✔
addressing ✔ ✔ ✔ ✔
global by default

Similarities and differences in function

William Smith
Something else that all these tools have in common is "addressing".

Think of an address like your home or office mailing address.

Your address helps me find you.

In awk, sed, and grep, addressing helps them find text strings in the content I'm searching.

Notes

function checkResponseCode() {
 httpStatusCodes="000 No HTTP code received
200 Request successful
201 Request to create or update object successful
400 Bad request
401 Authentication failed
403 Invalid permissions
404 Object/resource not found
409 Conflict
500 Internal server error"

 responseCode=${1: -3}
 code=$(grep "$responseCode" <<< "$httpStatusCodes")

 echo "$code"
}

William Smith
Here's a quick example of what I mean.

I've applied syntax coloring to make it easier to read, but it's really not important here.

This is a function that I include in a lot of my scripts where I'm using the curl command to read Jamf Pro's API.

Every time I run it, it returns a three-digit HTTP status code.

Status codes in the 200s mean successful. Status codes in the 400s generally mean an error of some kind.

Sometimes in my scripts, I want to know whether my curl command succeeded or failed.

But I like words more than numbers. I can understand what words mean. So, I've listed about nine of the most common status codes I might see from "000" to "500".

If I receive a status code of "409", I use grep to search for "409" in my list of status codes and it returns "409 Conflict".

The "409" is acting like an address. It's allowing me to pinpoint a specific line in my list of status codes and return it to me with its meaning.

I'll talk more in a little bit about how to use addressing and how to recognize addressing in someone else's scripts.

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations ✘ ✘ ✘ ✔
file argument ✔ ✔ ✔ ✔
one-letter commands ✔ ✘ ✔ ✘
substitution ✔ ✘ ✔ ✔
line-based editing ✔ ✘ ✔ ✔
regular expressions ✔ ✔ ✔ ✔
addressing ✔ ✔ ✔ ✔
global by default ✘ ✔ ✔ ✔

Similarities and differences in function

William Smith
Last on this list I mention "global by default". And notice how ed isn't global.

So, what do I mean by "global"?

Simply put, a command applies to the entire amount of text you submit to it and will return everything it finds. Not just the first thing it finds.

Notes

poem="Mary had a little lamb.
Its fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go."

grep 'Mary' <<< "$poem"

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

Mary had a little lamb.
And everywhere that Mary went,

Notes

poem="Mary had a little lamb.
Its fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go."

grep 'Mary' <<< "$poem"

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

Mary had a little lamb.
And everywhere that Mary went,

William Smith
Each command is doing something just a little different from the other two.

Grep is the simplest. You give it something to search for and something to search in (my poem), and it returns any line containing what I'm searching for.

Notes

poem="Mary had a little lamb.
Its fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go."

grep 'Mary' <<< "$poem"

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

Mary had a little lamb.
And everywhere that Mary went,

William Smith
On the other hand, I have to tell sed what I want it to do when it finds a match. In this case, I want it to print that line to screen. To do that I have specify "P" to print. Remember, sed inherited ed's one-letter commands. "P" for "print" is one of them.

Notes

Mary had a little lamb.
And everywhere that Mary went,

poem="Mary had a little lamb.
Its fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go."

grep 'Mary' <<< "$poem"

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

Mary had a little lamb.
Mary had a little lamb.
Its fleece was white as snow.
And everywhere that Mary went,
And everywhere that Mary went,
The lamb was sure to go.

William Smith
But if thats all I did, I'd get something that looks like this instead.

Sed's default operation is to first print the line it's evaluating. "I am working on the line: Mary had a little lamb. Just letting you know..." And if that line matches, it'll tell you that it matches. "I have found a match. Here it is: Mary had a little lamb."

Then it moves on to the next line. "I am working on the line: Its fleece was white as snow. Just letting you know..." But if it doesn't match, it does nothing and moves on. And it goes like that line-by-line until the end.

That's why I need to include that "-n" option. It's telling sed, "Hey, you know what? Don't bother telling me which line you're processing next."

And with that combination of "-n" and "p", I get what I'm really after, which are just the lines containing "Mary".

Notes

Mary had a little lamb.
And everywhere that Mary went,

poem="Mary had a little lamb.
Its fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go."

grep 'Mary' <<< "$poem"

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

Mary had a little lamb.
And everywhere that Mary went,

$1
Mary had a little lamb.
And everywhere that Mary went,

$1 $2 $3 $4 $5

William Smith
Awk has a superpower.

To do like grep and sed and return every line, I need to tell it print (spelled out) "$0", which means "print the entire line" when you find a match.

But if I replace that "print $0" with a "print $1", then it'll not only find every line that contains "Mary", it'll print only the first word of each line.

"$2" will print the second word of each matching line. "$3" the third word. And so on.

Now, we're seeing awk as a text processor rather than just a text filter.

Notes

ed grep sed awk

plain text ✔ ✔ ✔ ✔
numbers and calculations ✘ ✘ ✘ ✔
file argument ✔ ✔ ✔ ✔
one-letter commands ✔ ✘ ✔ ✘
substitution ✔ ✘ ✔ ✔
line-based editing ✔ ✘ ✔ ✔
regular expressions ✔ ✔ ✔ ✔
addressing ✔ ✔ ✔ ✔
global by default ✘ ✔ ✔ ✔

Similarities and differences in function

William Smith
This list only scratches the surface of how awk, sed, and grep are similar and different.

But I think understanding each of these is the path to wizardry.

And it should be apparent looking at the checks and Xes, sed and awk are the two powerhouse command line tools here.

Notes

̣ Origins

̣ What they have in common

̣ When to use each

̣ Syntax

William Smith
There's a saying that goes "When all you have is a hammer, everything looks like a nail."

What I'm hoping you grasp from that list is that there can be a right tool for the right job.

Sure, I can pound a screw into a piece of wood with a hammer, but it would be so much better and easier if I learned how to use a screwdriver.

Let's talk more about when you'd want to use each tool.

Notes

‘What data do we have and what do we want from it?’
Choosing the right tool

William Smith
To choose the right tool for the right job, we need to know two things:

What type of data do we have?
What do we want from it?

In a little bit, we're going to look at a few types of data we might see in our jobs as administrators.

Notes

‘We really want data in a standardized format.’
Structured data

William Smith
But before we look at some examples, let's talk a little about structured data.

It's usually easy to recognize when you see it. Simply put, we're looking to see if it's presented to us in some sort of format.

Notes

fields

William Smith
This is one of the most common ways we could receive data — a spreadsheet.

It's the epitome of structured data.

This is an export from my Jamf Pro server of some computers I have in inventory.

We have a whole bunch of these rectangles and many of them hold some information. Some don't hold any information.

These spaces are called cells in a spreadsheet, but they're also known as fields.

You can very literally think about them as fields on a farm.

They're often next to each other. Some of them may have crops growing in them or some may be fallow for the season and be empty — placeholders.

Just because a field is empty, doesn't mean the field itself doesn't exist.

Notes

record

William Smith
We have rows going across that describe computer information.

In a database or a spreadsheet we'd call each of these rows a record.

We have five records giving us details about five computers.

Notes

record

header

William Smith
We have an extra row at the top that's not a record but headers for the columns in each record.

And it may sound trivial to mention, but it's important when speaking about structured data. A spreadsheet like this will only ever have one row of headers and it will always be at either the top or bottom of the records — usually the top.

But structured data may not always have these headers, which makes it even more important to understand what your data contains.

Notes

column
attributes
or

properties

data point

William Smith
Then we have columns. In this case we have six columns.

The headers at the top of the columns each define a specific attribute or property such as model or serial number.

And each cell in this spreadsheet is one piece of data. Sometimes it's called a data point.

Again, not every field may contain data. But the field still exists, and no data is technically data.

Notes

William Smith
By itself, a data point is meaningless.

But when we cross-reference it with a key piece of information in the record like the computer name or a property like a serial number, then have more than data. We have information.

It's information that we're after. And to get detailed information we need this structured data.

But note that I'm not telling you what structure we need. The structure's not that important.

Notes

Computer Name Last Reported IP
Address Model Serial Number Last Check-in Operating System

William's MacBook
Air 192.168.5.115 MacBook Air (11-

inch Early 2015) C02QR0D0GFWM 3/22/23 18:32 macOS 12.6.3

MacBook Air 192.168.5.98 MacBook Air (11-
inch Early 2015) 5/22/21 17:32 macOS 11.2.3

admin2's MacBook
Air 192.168.108.119 MacBook Air (M1,

2020) C02DV32EQ6LT 3/16/23 8:53 macOS 13.2.1

Sam's MacBook
Pro 192.168.64.2 VirtualMac2,1 ZMG0D1XHM9 6/12/24 23:33 macOS 14.5.0

William's MacBook
Pro 192.168.5.82 MacBook Pro (13-

inch, 2018) C02X82E1JHD3 7/3/24 16:48 macOS 14.5.0

Table structure and text structures

William Smith
A spreadsheet's nothing more than a table.

This is the same information in the same order. It just looks different.

And do you see more structure within the structure?

An IP address has a structure of four numbers separated by three periods.

These timestamps have a structure of date followed by time.

The date itself has a structure of month, day, and year separated by slashes, and the time has a structure of two numbers separated by colons.

And structure isn't limited to numbers. The operating system names all begin with "macOS" and they're followed by version numbers in Semantic Versioning format.

Notes

Computer Name,Last Reported IP Address,Model,Serial Number,Last Check-in,Operating System

William’s MacBook Air,192.168.5.115,MacBook Air (11-inch Early
2015),C02QR0D0GFWM,2023-03-22 18:32:48,macOS 12.6.3

MacBook Air,192.168.5.98,MacBook Air (11-inch Early 2015),,2021-05-22 17:32:52,macOS 11.2.3

admin2’s MacBook Air,192.168.108.119,"MacBook Air (M1, 2020)",C02DV32EQ6LT,2023-03-16
08:53:44,macOS 13.2.1

Sam's MacBook Pro,192.168.64.2,"VirtualMac2,1",ZMG0D1XHM9,2024-06-12 23:33:45,macOS
14.5.0

William’s MacBook Pro,192.168.5.82,"MacBook Pro (13-inch, 2018)",C02X82E1JHD3,2024-07-03
16:48:23,macOS 14.5.0

Comma-separated values (CSV) structure

¬
¬

¬
¬

¬

William Smith
Now, here's the same computer information in a different format — a different structure.

The computer records are still sorted top to bottom, but their fields are separated by commas.

And it's important to note that each record is separated by a new line character. A return. This key right here.

Many GUI applications will allow you to show invisible characters like returns.

Know that they are characters too! You may not see them, but awk, sed, and grep will see them.

Knowing what separates the data is going to be super important later!

Notes

<Computers>
 <Computer>
 <Computer_Name>William’s MacBook Air</Computer_Name>
 <Last_Reported_IP_Address>192.168.5.115</Last_Reported_IP_Address>
 <Model>MacBook Air (11-inch Early 2015)</Model>
 <Serial_Number>C02QR0D0GFWM</Serial_Number>
 <Last_Check_in>2023-03-22 18:32:48</Last_Check_in>
 <Operating_System>macOS 12.6.3</Operating_System>
 </Computer>
 <Computer>
 <Computer_Name>MacBook Air</Computer_Name>
 <Last_Reported_IP_Address>192.168.5.98</Last_Reported_IP_Address>
 <Model>MacBook Air (11-inch Early 2015)</Model>
 <Serial_Number/>
 <Last_Check_in>2021-05-22 17:32:52</Last_Check_in>
 <Operating_System>macOS 11.2.3</Operating_System>
 </Computer>
 <Computer>
 <Computer_Name>admin2’s MacBook Air</Computer_Name>
 <Last_Reported_IP_Address>192.168.108.119</Last_Reported_IP_Address>
 <Model>MacBook Air (M1, 2020)</Model>
 <Serial_Number>C02DV32EQ6LT</Serial_Number>
 <Last_Check_in>2023-03-16 08:53:44</Last_Check_in>
 <Operating_System>macOS 13.2.1</Operating_System>
 </Computer>
 <Computer>
 <Computer_Name>Sam's MacBook Pro</Computer_Name>
 <Last_Reported_IP_Address>192.168.64.2</Last_Reported_IP_Address>
 <Model>VirtualMac2,1</Model>
 <Serial_Number>ZMG0D1XHM9</Serial_Number>
 <Last_Check_in>2024-06-12 23:33:45</Last_Check_in>
 <Operating_System>macOS 14.5.0</Operating_System>
 </Computer>
 <Computer>
 <Computer_Name>William’s MacBook Pro</Computer_Name>
 <Last_Reported_IP_Address>192.168.5.82</Last_Reported_IP_Address>
 <Model>MacBook Pro (13-inch, 2018)</Model>
 <Serial_Number>C02X82E1JHD3</Serial_Number>
 <Last_Check_in>2024-07-03 16:48:23</Last_Check_in>
 <Operating_System>macOS 14.5.0</Operating_System>
 </Computer>
</Computers>

Extensible markup language (XML) structure

William Smith
Here's yet another way to structure the same data.

I hope most of you are familiar with XML.

Notes

Extensible markup language (XML) structure
<Computers>
 <Computer>
 <Computer_Name>William’s MacBook Air</Computer_Name>
 <Last_Reported_IP_Address>192.168.5.115</Last_Reported_IP_Address>
 <Model>MacBook Air (11-inch Early 2015)</Model>
 <Serial_Number>C02QR0D0GFWM</Serial_Number>
 <Last_Check_in>2023-03-22 18:32:48</Last_Check_in>
 <Operating_System>macOS 12.6.3</Operating_System>
 </Computer>
 <Computer>
 <Computer_Name>MacBook Air</Computer_Name>
 <Last_Reported_IP_Address>192.168.5.98</Last_Reported_IP_Address>
 <Model>MacBook Air (11-inch Early 2015)</Model>
 <Serial_Number/>
 <Last_Check_in>2021-05-22 17:32:52</Last_Check_in>
 <Operating_System>macOS 11.2.3</Operating_System>
 </Computer>
 <Computer>
 <Computer_Name>admin2’s MacBook Air</Computer_Name>
 <Last_Reported_IP_Address>192.168.108.119</Last_Reported_IP_Address>
 <Model>MacBook Air (M1, 2020)</Model>
 <Serial_Number>C02DV32EQ6LT</Serial_Number>

William Smith
Mostly, we just receive data in this format, we don't really create it.

To make this easier for us look through, I've applied syntax coloring to it.

Again, our records are in the same order, but what you're looking at is actually formatted in two different ways at the same time.

First, this XML is formatted for human readability. What I mean by that is each computer record is indented and each property within a computer record is indented even more.

And each piece of information is on its own line.

Notes

Extensible markup language (XML) structure
<Computers><Computer><Computer_Name>William’s MacBook Air</
Computer_Name><Last_Reported_IP_Address>192.168.5.115</Last_Reported_IP_Address><Model>MacBook Air (11-inch
Early 2015)</Model><Serial_Number>C02QR0D0GFWM</Serial_Number><Last_Check_in>2023-03-22 18:32:48</
Last_Check_in><Operating_System>macOS 12.6.3</Operating_System></
Computer><Computer><Computer_Name>MacBook Air</Computer_Name><Last_Reported_IP_Address>192.168.5.98</
Last_Reported_IP_Address><Model>MacBook Air (11-inch Early 2015)</Model><Serial_Number/
><Last_Check_in>2021-05-22 17:32:52</Last_Check_in><Operating_System>macOS 11.2.3</Operating_System></
Computer><Computer><Computer_Name>admin2’s MacBook Air</
Computer_Name><Last_Reported_IP_Address>192.168.108.119</Last_Reported_IP_Address><Model>MacBook Air (M1,
2020)</Model><Serial_Number>C02DV32EQ6LT</Serial_Number><Last_Check_in>2023-03-16 08:53:44</
Last_Check_in><Operating_System>macOS 13.2.1</Operating_System></Computer><Computer><Computer_Name>Sam's
MacBook Pro</Computer_Name><Last_Reported_IP_Address>192.168.64.2</
Last_Reported_IP_Address><Model>VirtualMac2,1</Model><Serial_Number>ZMG0D1XHM9</
Serial_Number><Last_Check_in>2024-06-12 23:33:45</Last_Check_in><Operating_System>macOS 14.5.0</
Operating_System></Computer><Computer><Computer_Name>William’s MacBook Pro</
Computer_Name><Last_Reported_IP_Address>192.168.5.82</Last_Reported_IP_Address><Model>MacBook Pro (13-inch,
2018)</Model><Serial_Number>C02X82E1JHD3</Serial_Number><Last_Check_in>2024-07-03 16:48:23</
Last_Check_in><Operating_System>macOS 14.5.0</Operating_System></Computer></Computers>

<Computers><Computer><Computer_Name>William’s MacBook Air</

William Smith
But here's how computers read XML.

They don't care about the returns between records, and they don't care about what separates fields.

Notes

Extensible markup language (XML) structure

<Computers><Computer><Computer_Name>William’s MacBook Air</

William Smith
In fact, they see XML as one long stream of data.

And where have we heard the word "stream" before?

Maybe "stream editor"? Sed?

It's a great tool for XML.

Notes

Other data structures

̣ Table

̣ CSV/Tab

̣ XML

̣ Time stamp

̣ Date

̣ Time

̣ JSON

̣ Log file

̣ HTML

̣ Markdown

̣ Property list

̣ Camel case

Patterns

William Smith
I've shown examples of data in a table, as a comma-separated value list, and as XML.

And I've even shown there can be sub-data structures like date and time formats.

There are other data structures like JSON, log files, HTML, Markdown.

Even camel case where we capitalize the first letter of words and then concatenate them into a single string follows a pattern.

And that's what we're really looking for is patterns in our data.

If we can identify a pattern, that's half the battle. The rest is just applying the right tool.

If you can't identify a pattern, you're probably going to be out of luck.

Notes

‘What data do we have and what do we want from it?’
Choose the right tool

William Smith
So, which tool — awk, sed, or grep — is right for each pattern?

To determine that, we have to know that our data follows a pattern, and then we have to decide what we want from that data.

Notes

grep sed awk

Search Search and replace Process text

I don’t see a pattern.

I’m only looking for the
existence of something.

I’m trying to change
something.

I’m trying to extract
specific data points.

I’m trying to reformat
my data.

My data has no line
breaks.

Choose the right tool

William Smith
I said before that you can think of grep like a search tool, sed is like search and replace, and awk is what you want for processing text beyond simple search and replace.

So, pretend we're looking at some data and trying to figure out if it has some structure to it, and what we want from it.

Here are some things we might say to ourselves.

Notes

grep sed awk

Search Search and replace Process text

I don’t see a pattern. ✔ ✔ ✘
I’m only looking for the
existence of something.

I’m trying to change
something.

I’m trying to extract
specific data points.

I’m trying to reformat
my data.

My data has no line
breaks.

Choose the right tool

William Smith
I don't see a pattern.

Maybe I'm looking at a data dump of information someone's provided me like text for a book or brochure. This is pretty common in the print industry. I might be a proofreader and I'm looking to create an index of key words.

Grep would be ideal for that because I'm only searching for specific words to create my index.

Or I might have noticed the author commonly misspells "Mississippi".

Grep can't help me correct spelling, but sed can. I can search for the misspelled words and then replace them with the correct words.

Awk could probably do that took, but it would be overkill.

Notes

grep sed awk

Search Search and replace Process text

I don’t see a pattern. ✔ ✔ ✘
I’m only looking for the
existence of something. ✔ ✘ ✘

I’m trying to change
something.

I’m trying to extract
specific data points.

I’m trying to reformat
my data.

My data has no line
breaks.

Choose the right tool

William Smith
I'm only looking for the existence of something.

This one's pretty straightforward. I want to use grep.

It's simple, and that's what it's made for.

I might actually find it more difficult to use sed or awk for something as simple as this.

Notes

grep sed awk

Search Search and replace Process text

I don’t see a pattern. ✔ ✔ ✘
I’m only looking for the
existence of something. ✔ ✘ ✘

I’m trying to change
something. ✘ ✔ ✘

I’m trying to extract
specific data points.

I’m trying to reformat
my data.

My data has no line
breaks.

Choose the right tool

William Smith
I'm trying to change something.

That's what sed does so well.

Its sole purpose is to read a stream of data, whether it follows some sort of pattern or not, find a thing and then at that spot change the thing to something else.

It could be changing a word or deleting a word.

Or maybe I see the author using a term like "regular expression" over and over.

I could use sed to change each occurrence to "regex" instead.

Sed is perfect for that.

Notes

grep sed awk

Search Search and replace Process text

I don’t see a pattern. ✔ ✔ ✘
I’m only looking for the
existence of something. ✔ ✘ ✘

I’m trying to change
something. ✘ ✔ ✘

I’m trying to extract
specific data points. ✘ ✔ ✔

I’m trying to reformat
my data.

My data has no line
breaks.

Choose the right tool

William Smith
I'm trying to extract specific data points.

I can use sed very effectively as a filter.

Quite often I'm dealing with XML. And remember that XML includes tags with angle brackets around its data.

Sometimes, I just want what's between the tags.

I can tell sed to look for one of those tags and then give me only the data between between the opening and closing tags.

But what if I have something like a mailing list with names, addresses, and phone numbers? And what if I want to look for everyone in Pennsylvania and create a list of phone numbers? That's when awk shines.

I showed an example of awk a bit ago looking for all lines with "Mary" in my "Mary had a little lamb" poem. Then I showed how I could call "$1", "$2", "$3", etc., to print specific words.

I'll show more about this in a bit.

Notes

grep sed awk

Search Search and replace Process text

I don’t see a pattern. ✔ ✔ ✘
I’m only looking for the
existence of something. ✔ ✘ ✘

I’m trying to change
something. ✘ ✔ ✘

I’m trying to extract
specific data points. ✘ ✔ ✔

I’m trying to reformat
my data. ✘ ✘ ✔

My data has no line
breaks.

Choose the right tool

William Smith
I'm trying to reformat my data.

As I've said a few times, grep is for search, sed is for search and replace, and awk is for text processing.

That mailing list I have probably has all my information stored in a spreadsheet or CSV file with one person per row.

Using awk, not only can I extract that data, I can use it to create mailing labels with the name of a person on the first row and their address below that.

We'll see how that works.

Notes

grep sed awk

Search Search and replace Process text

I don’t see a pattern. ✔ ✔ ✘
I’m only looking for the
existence of something. ✔ ✘ ✘

I’m trying to change
something. ✘ ✔ ✘

I’m trying to extract
specific data points. ✘ ✔ ✔

I’m trying to reformat
my data. ✘ ✘ ✔

My data has no line
breaks. ✘ ✔ ✘

Choose the right tool

William Smith
My data has no line breaks.

This one's a little tricky.

All these tools are effectively line editors and they need line breaks to help with the separation of data. That's why structured data is so important.

Grep isn't going to be very help. It only returns entire lines of text. If all the data is running together, it'll only be able to tell you "Yes, I found a match" or "No, I didn't find a match."

And that may be good enough. But it's probably not what you're after.

Sed can work somewhat without line breaks. Again, think about that XML stream. Sed stands for "stream editor", so it's made to work on streaming text like that.

But if you can feed it structured data with each record separated by a line break, it'll be a lot more powerful.

And awk is really only useful with line breaks.

Notes

‘We really want data in a standardized format.’
Structured data

William Smith
So, my advice to you here is structured data, structured data, structured data!

We really want data in a standardized format.

Notes

̣ Origins

̣ What they have in common

̣ When to use each

̣ Syntax

William Smith
You're probably thinking by now, "Bill, that's all well and good, but what I really came here for was all the code snippets! Can you just show me the code?"

I'm going to give you several examples next.

But keep in mind I've talked for a hundred slides and I've already given you the information that's most useful, which is you want to determine the right tool for the the right job.

If you're planning on learning any of these tools in depth, you're still going to Google much of this information.

Notes

1990 2009

William Smith
But if you're planning to use these tools day-in and day-out, I highly recommend learning from books and following their step-by-step examples or taking an online class.

Immerse yourself.

I personally love physical books, and these are two that I have from O'Reilly. They're the de facto publisher of technical instruction guides for computers.

And you know what? They don't really go out of date.

As I said earlier, these command line tools are nearly 50 years old. They've certainly been updated over the years, but they're still mostly the same as when these books were published.

Buy your books from a used book store. Save the planet.

Notes

The useless use of cat

cat ~/Desktop/list.txt | grep "tacos"

cat ~/Desktop/list.txt | sed -n "tacos/p"

cat ~/Desktop/list.txt | awk '/tacos/ { print $0 }'

William Smith
Before we get into some code examples, I'd like to explain a little about how I write my code and script things.

Let's start off with the "useless use of cat".

And by that I mean using the cat command to read a file and then piping that into awk, sed, or grep.

Don't do that.

Notes

The useless use of cat

cat ~/Desktop/list.txt | grep "tacos"

cat ~/Desktop/list.txt | sed -n "tacos/p"

cat ~/Desktop/list.txt | awk '/tacos/ { print $0 }'

✔

✔

✔

grep "tacos" ~/Desktop/list.txt

sed -n "tacos/p" ~/Desktop/list.txt

awk '/tacos/ { print $0 }' ~/Desktop/list.txt

William Smith
Each of these tools can read files on their own without any help from cat.

All you need to do is put your file name at the end, and they'll each use that for input.

You're also eliminating a command, which means there's less to go wrong and less to troubleshoot when something does go wrong.

Notes

echo "$variable" | grep "tacos"

echo "$variable" | sed -n "tacos/p"

echo "$variable" | awk '/tacos/ { print $0 }'

The useless use of echo

William Smith
I kind of feel the same way about "echo" and variables.

Echo is actually built into the shell, but it's still a command.

Notes

echo "$variable" | grep "tacos"

echo "$variable" | sed -n "tacos/p"

echo "$variable" | awk '/tacos/ { print $0 }'

grep "tacos" <<< "$variable"

sed -n "tacos/p" <<< "$variable"

awk '/tacos/ { print $0 }' <<< "$variable"

The useless use of echo

♥

♥

♥

William Smith
I prefer here strings. That's what those three less than symbols are.

If you're familiar with using a single greater than symbol to write something to a file and two greater than symbols appending to a file, think of a here string as something similar.

What it's doing here is the equivalent of piping the variable into the command without having to call "echo".

I just like this better. But I don't see many folks doing this, so thought I should explain it.

Notes

grep tacos <<< "$variable"
grep 'too many tacos' <<< "$variable"
grep "$variable" ~/Desktop/list.txt

Single quotes, double quotes, and no quotes

William Smith
And you may have noticed how I used quotes in my earlier examples.

Quotes are very forgiving, but there are times when you need to use the correct quotes.

Looking at grep, I follow a few practices.

First, you really don't need quotes around single words, like I'm showing in the first example "tacos". But in the second example, I do need quotes around my search string "too many tacos" when it contains spaces.

Notice these are single quotes. I could just as easily use double quotes. It usually won't make a difference.

And in the third example, my search string is actually a variable, and I must use double quotes. If I used single quotes, my variable wouldn't expand and grep would literally look for "$variable".

To keep it simple, I always use double-quotes around my search strings. I'll rarely go wrong with that.

Notes

grep tacos <<< "$variable"
grep 'too many tacos' <<< "$variable"
grep "$variable" ~/Desktop/list.txt

sed -n 'tacos/p' <<< "$variable"
sed -n "$variable/p" ~/Desktop/list.txt

Single quotes, double quotes, and no quotes

William Smith
When I use sed, I must use quotes around my search strings — either single or double.

Here, I usually usually use single quotes.

Otherwise, if there's a variable, I still need double-quotes around my search string.

Notes

grep tacos <<< "$variable"
grep 'too many tacos' <<< "$variable"
grep "$variable" ~/Desktop/list.txt

sed -n 'tacos/p' <<< "$variable"
sed -n "$variable/p" ~/Desktop/list.txt

awk '/tacos/ { print $0 }' <<< "$variable"

Single quotes, double quotes, and no quotes

William Smith
Finally, with awk I want single quotes around my print command in the curly braces.

And in order to include a search string, I need to include that within my quotes.

So, single quotes here.

I'll warn you there may be some nuance about using quotes with any of these commands, but these are the rules I generally follow.

Notes

Terms

grep 'Mary' file.txt

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

statement

William Smith
And just so we can keep things straight, let's define a few terms that identify parts of our commands.

These are the three commands I showed you earlier for returning all the lines containing "Mary" from my poem earlier.

Sometimes, I may loosely refer to the entire line as a "command" and I don't want that to be confusing.

So, let's call each of these lines a "statement". I'm telling the computer what I want it to do.

Notes

Terms

grep 'Mary' file.txt

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

binary

program

application

command line too
l

William Smith
We quite often we refer to these as "commands" too.

Each of these — grep, sed, and awk — is a binary or a program or an application or a command line tool. It's a compiled piece of code that accepts instructions to carry out an action.

Notes

Terms

grep 'Mary' file.txt

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

option

William Smith
I'm only showing it for sed, but all of these command line tools support "options".

And I'll say it... Options are optional.

Important to know... they are not verbs! They take no action.

They're an extra limitation or extension of what the tool can do. But they're not a command.

Notes

Terms

grep -E 'Mary' file.txt

grep --extended-regexp 'Mary' file.txt

abbreviation

full name

William Smith
You can recognize options because they generally begin with a single dash and a letter or sometimes a double-dash and a word.

This is a loose naming standard across command line tools.

What I'm showing you here is the same option written in two different ways. The first is an abbreviation and the second is the same option but spelled out.

Either will work identically in your scripts. There's no difference.

But do your future self and anyone else who looks at your scripts a favor. Whenever possible, use the full name. It's readable and it's understandable. You don't have to guess what it means.

Feel free to use the abbreviation when you're typing this manually into Terminal to save yourself a few keystrokes.

Notes

Terms

grep 'Mary' file.txt

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

pattern

William Smith
Earlier, I talked about how we're using the word "Mary" as a search term or an "address".

This is what I'm telling my command line tool to identify in the data I'm giving it.

That's the text "Mary". But the term for this text is "pattern".

It's a string of characters I'm telling my command line tool to match. And if it finds a match, to do something.

To keep these straight, think of where I live — apartment 1A. That's my address or my search term.

But the pattern is a number followed by a letter.

Notes

Terms

'M.*y' = 'Mary', "Marty", "Misty" or "Magnanimously"

grep 'M.*y' file.txt

sed -n '/M.*y/p' <<< "$poem"

awk '/M.*y/ { print $0 }' <<< "$poem"

William Smith
And patterns support regular expressions.

Here, I've replaced the middle letters with a dot followed by an asterisk, which means 0 or more characters.

Now, my pattern might match "Mary", "Marty", "Misty", or "Magnanimously".

Any single word that begins with a capital "M" and ends with a lower case "y".

Notes

grep 'Mary' file.txt

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

Terms

command

William Smith
Up to now, I've been defining what to look for in my statements.

Now, I need to say what to do.

Toward the end of my statement is the command. Remember, this is a verb. This is where we say what action we want to take. And we can only take one action at at time not multiple.

And you'll notice here that each command line tool has a different way of invoking a command.

I mentioned grep is short for "global regular expression print". The print command is literally built into grep, so that's why we don't need to call it out.

Notes

grep 'Mary' file.txt

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

Terms

command

p = Print lines
d = Delete lines
w = Write pattern space to file
a = Append line after
i = Insert line before

William Smith
Sed takes after ed and uses single letters for commands.

We've talked about "p" meaning print, which means display on the screen, but other common commands include delete, write, append, and insert.

Some of those are directly from ed.

Notes

grep 'Mary' file.txt

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

Terms

command

'{ print $0 }'
'{ print $1, $2 }'
'{ print 10 + 20 }'
'{ a = 10; b = 20 } { print a + b }'

William Smith
Awk, for the most part though, has pretty much one command. And that's to print. And you'll always find it inside curly braces and single quotes like you see here.

But its print is pretty powerful.

We can tell it to print "$0" or the entire line it finds.

Or we can tell it to print "$1, $2" or just the first and second words of the entire line it finds.

We can tell it to do math — add 10 to 20 and print "30".

And it can even handle variables. In the first set of brackets I can do something like assign values "10" and "20" to variables "a" and "b" and in the second set of brackets add those variables together.

And print "30".

Notes

grep 'Mary' file.txt

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

Terms

William Smith
It's the commands that produce results or make change happen.

Again, they are verbs. Verbs show action.

Notes

grep 'Mary' file.txt

sed -n '/Mary/p' <<< "$poem"

awk '/Mary/ { print $0 }' <<< "$poem"

Terms

input

William Smith
The last part of any of these statements is the input — the data we provide for them to process.

I mentioned earlier that grep, sed, and awk can all read files. You just need to add the path to the file at the end of the statement.

And I discussed how I like using here strings — those three less-than symbols that let me use a variable from earlier in my script as input.

This is what I prefer not only to avoid using something like the cat or echo commands, but it allows me to always have my input at the end of my statements.

I like that for consistency when reading my scripts.

Notes

program options address/pattern command input

Terms

William Smith
Altogether, awk, sed, and grep will generally follow this formula.

I invoke the name of the tool or the program. I provide any options that I need to limit or extend what I'm doing.

I give it an address that's to tell it what to look for or follows a pattern of some kind.

I call the command to tell it what to do.

And at the end I specify the input data for it to act on.

So, let's look at some examples.

Notes

Grep examples

xml="<mobile_device_model>
 <model_name>Watch7,3</model_name>
 <display_name>Apple Watch Series 8</display_name>
</mobile_device_model>
<mobile_device_model>
 <model_name>Watch7,4</model_name>
 <display_name>Apple Watch Series 9</display_name>
</mobile_device_model>"

grep "model_name" <<< "$xml"

 <model_name>Watch7,3</model_name>
 <model_name>Watch7,4</model_name>

William Smith
We'll start with grep.

Here I have some XML about some Apple Watch models.

There's an XML tag on the second line of each record called "model name". I want to pull all the model names from my XML.

I grep "model_name" and feed it my XML.

It returns two lines.

That one's simple enough. Let's look at another.

Notes

xml="<mobile_device_model>
 <model_name>Watch7,3</model_name>
 <display_name>Apple Watch Series 8</display_name>
</mobile_device_model>
<mobile_device_model>
 <model_name>Watch7,4</model_name>
 <display_name>Apple Watch Series 9</display_name>
</mobile_device_model>"

grep --after-context 1 "model_name" <<< "$xml"

 <model_name>Watch7,3</model_name>
 <display_name>Apple Watch Series 8</display_name>
--
 <model_name>Watch7,4</model_name>
 <display_name>Apple Watch Series 9</display_name>

Grep examples

William Smith
Grep has an option called "after context", which just means "I'm looking for some line after the one I found".

In this case, I want to get the display name of the Apple Watch too. And the display name is always on the next line.

So my option is --after-context 1. The "1" means "one line down".

When I run my statement, I get not only the the line that matches my pattern but also whatever line follows that pattern.

Notes

xml="<mobile_device_model>
 <model_name>Watch7,3</model_name>
 <display_name>Apple Watch Series 8</display_name>
</mobile_device_model>
<mobile_device_model>
 <model_name>Watch7,4</model_name>
 <display_name>Apple Watch Series 9</display_name>
</mobile_device_model>"

grep --after-context 1 --line-number "model_name" <<< "$xml"

2: <model_name>Watch7,3</model_name>
3- <display_name>Apple Watch Series 8</display_name>
--
6: <model_name>Watch7,4</model_name>
7- <display_name>Apple Watch Series 9</display_name>

Grep examples

William Smith
And I'm not limited to just one option. I can use multiple.

So not only can I use my "after context" option, I can add another one called "line number". It prints the line number of the matching lines.

Here, I've matched lines 2 and 3 as well as 6 and 7.

Grep's not difficult to use to find information. It's always going to follow the syntax of program, then options, then pattern, then input.

Notes

modelNames="Watch7,3
Watch7,4
Watch7,5"

sed 's/Watch7,3/Apple Watch Series 9/' <<< "$modelNames"

Apple Watch Series 9
Watch7,4
Watch7,5

Sed examples

's/pattern/replacement/'

William Smith
Now, let's look at sed, and let's look at one of its core features, which is substitution.

In ed, I showed how it could substitute the word "two" with "three".

Sed takes that exact syntax.

Here I have a list of Apple Watch models.

I'm no good with model identifiers like this. I need words.

So, I want to substitute the model identifier with its display name.

This is sed's syntax for that. It looks just like ed.

So, I write my statement like this.

And it works!

Notes

modelNames="Watch7,3
Watch7,4
Watch7,5"

sed 's/Watch7,3/Apple Watch Series 9/ ; s/Watch7,4/Apple Watch Series 9/ ;
s/Watch7,5/Apple Watch Series 9/' <<< "$modelNames"

Apple Watch Series 9
Apple Watch Series 9
Apple Watch Series 9

Sed examples

's/pattern/replacement/'

William Smith
All of these, though, are Apple Watch Series 9 models. Why not change them all?

I can do this a few ways.

I can use semi-colons between multiple substitution commands.

Remember, these tools can only do one command at a time, but nothing says we can't string multiple commands in a row.

But when you start repeating things with slight changes as I'm doing here, consider there might be a better way.

Notes

modelNames="Watch7,3
Watch7,4
Watch7,5"

sed 's/Watch7,\d/Apple Watch Series 9/' <<< "$modelNames"

Apple Watch Series 9
Apple Watch Series 9
Apple Watch Series 9

Sed examples

's/pattern/replacement/'

William Smith
How about this instead?

All I've done is replace the the number 3 in the "Watch7,3" with a regular expression.

A "\d" means any single digit. That's a lot easier to understand and a lot easier to troubleshoot if something goes wrong. But you need to be familiar with regex.

Notes

Sed examples

's/pattern/replacement/'

William Smith
I've left this search and replace command for sed on the screen because I want to talk about the sed elephant in the room.

It took me years to notice this, and it caused me a lot of confusion until I learned sed came from ed.

Does anyone see it?

Notes

Sed examples

's/pattern/replacement/'
program options address/pattern command input

command pattern

William Smith
Let's look again at the order of items in a command statement.

...

The command is before the pattern.

This is the exception to the rule. Not because there's a reason. But really because it's substitution syntax is a legacy inherited from a 55 year-old program.

Every other sed command follows the normal order of items in a command statement.

If you remember one thing about sed, remember this.

Notes

Sed examples

'/pattern/one-letter-command'

William Smith
Otherwise, sed commands look more like this.

A pattern is always between forward-slashes, a single-letter command follows, and the whole thing is wrapped in quotes — single or double. It usually doesn't matter unless you're dealing with variables.

Notes

Sed examples

list="Line 1
Line 2
Line 3
Line 4
Line 5"

sed '2,4 d' <<< "$list"

Line 1
Line 5

William Smith
Here's a short sed example that does a couple of neat things.

First, the "2,4" is a different type of address. This time, instead of referring to a string or a regular expression as a search term, I'm using numbers to refer to line numbers. I'm not trying to match a pattern here, so I don't need to enclose my numbers in forward slashes.

Not only that, I'm separating these numbers with a comma, which creates a range. So here, "2,4" means "2 through 4".

And after that I add my command "d" for "delete".

It's really simple. And when I run it, lines 2-4 are removed from my output.

Notes

Sed examples

list="Line 1
Line 2
Line 3
Line 4
Line 5"

sed '2,4 w /Users/Shared/numbersFile.txt' <<< "$list"

Line 1
Line 2
Line 3
Line 4
Line 5

William Smith
And if I change the "d" to a "w" for "write" and I provide a path to a file, sed does two things:

First, it outputs to the screen every line that it evaluates. Remember, sed's just "letting you know..." what it's doing.

But at the same time, it's creating a new file called numbersFile.txt and populating it with lines 2 through 4.

Sed can do a lot! And you're likely going to be doing a lot of Googling to find the right syntax for what you need. Keep the concepts of options, patterns, and commands in mind when you're reading examples and you'll be more likely to understand what's happening.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

William Smith
Finally, let's look at some things awk can do.

It's ideal for working with tables of information like an address list.

I've said a couple of times, I can use it to look for something, pull out pieces of information, and then arrange them into a new form. I mentioned mailing labels earlier.

And here's my mailing list — one person per line along with their address, state, city, and postal code.

My goal is to create mailing labels only for those people in California.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

awk -F "," '/CA/ {

William Smith
Here's what I tried first.

Each piece of information looks to be separated by a comma. So, right after awk I added an option "-F", which lets me specify that commas are separating my pieces of data in each record.

I'm going to break each line into pieces where I have commas.

Then I include an address where the pattern is capital "CA" for "California. I'm telling awk to only print those lines where recipients live in California.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

awk -F "," '/CA/ {
print $1
print $2
print $3 $4 $5
}' <<< "$mailingList"

William Smith
Awk commands appear within curly braces. And notice I have multiple print commands following my curly brace, and I've put them on multiple lines just to make it easier to read.

Because this is structured data, "$1" always corresponds to a person's name, "$2" is their address, "$3" is their city, "$4" is state, and "$5" is postal code.

I close my curly braces and use a here string to input my mailing list.

Let's see what this looks like when I run it.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

awk -F "," '/CA/ {
print $1
print $2
print $3 $4 $5
}' <<< "$mailingList"

Abigail Adams
 100 A Street
 Albany CA 94706
Bob Bright
 200 B Street
 Bakersfield CA 93301
Edith Ebbing
 500 E Street
 Eagleville CA 96110

William Smith
OK, good first start.

I see my pieces of information are pretty much in the right place.

But I don't really care for how the address fields are indented.

Let's see what's causing that and try to fix it.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

fixedMailingList=$(sed 's/, /\t/g' <<< "$mailingList")

awk -F "," '/CA/ {
print $1
print $2
print $3 $4 $5
}' <<< "$fixedMailingList"

William Smith
The problem is that most of the fields are separated by a comma followed by a space.

But I see there's only a blank space between the state and the postal code.

And I'd like to have a comma appear between the city and the state in my mailing list, but I'm already using a comma as my field separator.

What to do!

Here's where a little help from sed comes in handy.

I'm going to change my field separator.

Look at the sed statement between parentheses.

I'm going to substitute every ", " (that's my pattern) with a tab. The backslash-t is the regular expression for tab.

And the "g" at the end means "global". If I didn't specify that global flag, sed would only change the first occurrence of ", " on each line and ignore the others.

I'm using a here string to input my mailing list variable into my sed statement.

And then I'm taking the entire results and putting them into a new variable called "fixedMailingList".

For my awk statement, I have to change my here string to use the "fixedMailingList" variable I just created.

I'm not going to change anything else yet.

I want to see what happens.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

fixedMailingList=$(sed 's/, /\t/g' <<< "$mailingList")

awk -F "," '/CA/ {
print $1
print $2
print $3 $4 $5
}' <<< "$fixedMailingList"

Abigail Adams 100 A Street Albany CA 94706

Bob Bright 200 B Street Bakersfield CA 93301

Edith Ebbing 500 E Street Eagleville CA 96110

William Smith
Oh, that's not right!

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

fixedMailingList=$(sed 's/, /\t/g' <<< "$mailingList")

awk -F "\t" '/CA/ {
print $1
print $2
print $3 $4 $5
}' <<< "$fixedMailingList"

William Smith
I didn't change the field separator in my awk statement.

I'm still using a comma and I converted all the commas to tabs.

So, let's change the comma to a tab — backslash t.

And let's try it again.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

fixedMailingList=$(sed 's/, /\t/g' <<< "$mailingList")

awk -F "\t" '/CA/ {
print $1
print $2
print $3 $4 $5
}' <<< "$fixedMailingList"

Abigail Adams
100 A Street
AlbanyCA 94706
Bob Bright
200 B Street
BakersfieldCA 93301
Edith Ebbing
500 E Street
EaglevilleCA 96110

William Smith
Alright, this is a lot better.

I don't have those weird spaces at the beginning of my lines anymore.

But I do see my city and state running together.

Let's fix that.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

fixedMailingList=$(sed 's/, /\t/g' <<< "$mailingList")

awk -F "\t" '/CA/ {
print $1
print $2
print $3 ", " $4 $5
}' <<< "$fixedMailingList"

William Smith
"$3" is my city and "$4" is my state.

SLIDE 142 • I'm going to add a comma + space in quotes between them.

Now, let's see what we get.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

fixedMailingList=$(sed 's/, /\t/g' <<< "$mailingList")

awk -F "\t" '/CA/ {
print $1
print $2
print $3 ", " $4 $5
}' <<< "$fixedMailingList"

Abigail Adams
100 A Street
Albany, CA 94706
Bob Bright
200 B Street
Bakersfield, CA 93301
Edith Ebbing
500 E Street
Eagleville, CA 96110

William Smith
And that's near perfection.

I think the only thing I want to do is make it a little cleaner.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

fixedMailingList=$(sed 's/, /\t/g' <<< "$mailingList")

awk -F "\t" '/CA/ {
print $1
print $2
print $3 ", " $4 $5
print ""
}' <<< "$fixedMailingList"

William Smith
I want to add a space between each mailing label.

I add another print statement at the bottom where all I'm doing is telling awk to print an empty line.

Notes

Awk examples

mailingList="Abigail Adams, 100 A Street, Albany, CA 94706
Bob Bright, 200 B Street, Bakersfield, CA 93301
Charlie Cartwright, 300 C Street, Cambridge, NY 12816
Denise Darling, 400 D Street, Dale, NY 14039
Edith Ebbing, 500 E Street, Eagleville, CA 96110"

fixedMailingList=$(sed 's/, /\t/g' <<< "$mailingList")

awk -F "\t" '/CA/ {
print $1
print $2
print $3 ", " $4 $5
print ""
}' <<< "$fixedMailingList"

Abigail Adams
100 A Street
Albany, CA 94706

Bob Bright
200 B Street
Bakersfield, CA 93301

Edith Ebbing
500 E Street
Eagleville, CA 96110

William Smith
That's more like it.

This was a good example of showing how you can use awk to not only find specific lines containing your search string, but then using it further to rearrange its elements into a different format.

And it was also a good example of taking a step back when you realize your data isn't structured the way you thought it was.

When I saw those spaces at the beginning of the address lines, I knew I could've use something like sed later to delete them, and I'd be fine. But it pays off sometimes to see whether or not there are other patterns I could be using instead.

Notes

̣ Origins

̣ What they have in common

̣ When to use each

̣ Syntax

William Smith
If you're familiar with scripting, you're probably familiar with man pages — the documentation for command line tools.

I tell my customers there are two types of manuals — those that tell you "Here's a button and here's what happens when you click the button." And those that tell you "Here's how to do what you want."

I hope you see today as merely the introduction to the second kind of manual.

Notes

Code snippets

jamf.it/asg

Feedback

bit.ly/

psumac-2024-53

