
James Reynolds, January 2023

jctl and python-jamf

Agenda

• The problem with Jamf

• The Jamf API

• Goals and history of the python-jamf

• python-jamf, jctl, pkgctl

What is Jamf?

• MySQL database

• Tomcat Server

• Java WAR app

• Angular front end (single page app)

• The front end is the biggest problem

• Lots of scrolling and clicking

ROOT.war

What Does Jamf Do?

• Package assignment and distribution

• Jamf features that can install packages

• Jamf Policies

• Jamf Patch Management

• Jamf Prestage Enrollment

• Demo

Jamf Policies

• Installs packages to “scoped” computers

• By design Jamf policies only run “once per computer”

• Erratic distribution because of common errors

• Workaround

• Run policies “ongoing”

• Scope the policy to a smart group

• This complicate everything and slows the server

• Demo

Jamf Patch Management

• Makes distributing packages really easy

• This wont install an application

• Will only upgrade it if it’s already installed

• Works great with Self Service otherwise…

• Jamf policies are still required!

• Just increases the number of steps to “promote” a package!

• Demo

Staging

• You have to have a smart group, a regular policy, and a patch policy for each
application

• 1 smart group, 1 policy, 1 patch policy

• Multiple stages (dev, testing, and prod) multiply the number above

• 2 stages = 2 smart groups, 2 policies, 2 patch policies

• A total of 6 things to edit for each package

• Demo

Solution: Jamf Classic API

• The Java Webapp powers the API

• There are 2 API’s and they don’t overlap very much

• Jamf Pro API

• Classic API (“classic” means it was their first attempt at an API)

• Most of what we want to do is in the Classic API

• Jamf is not going to develop the Classic API more

• There’s problems with the JSON output?

What is OpenAPI/Swagger

• https://www.openapis.org/

• OpenAPI is a way to describe how to interact with an API

• The definition is a JSON file

• Create server and client code just from a Swagger file

• Unfortunately, the Jamf Classic API doesn’t actually conform to the
standard so we couldn’t get the auto-generated client to work (or maybe
we just didn’t know what we were doing)

https://www.openapis.org/

Jamf’s Classic API Swagger File
33,691 lines

“paths": {

 "/accounts": {

	 "get": {

 		 "summary": "Finds all accounts",

 	 "parameters": [],

		 "produces": [

		 "application/xml",

 "application/json"

],

 "responses": {

		 "200": {

			 "description": “OK",

curl -X GET "http://example.com/JSSResource/accounts" -H "accept: application/xml"

Jamf’s Classic API Swagger File
33,691 lines

"definitions": {

 "account": {

 "type": "object",

 "properties": {

 "id": {

 "type": "integer",

 "example": 1

 },

 "name": {

 "type": "string",

 "example": "John Smith",

 "description": "Name of the account"

 },

Jamf’s Classic API Swagger File
The result

<?xml version="1.0" encoding="UTF-8"?>

 <accounts>

 <users>

 <user>

 <id>2</id>

 <name>james</name>

 </user>

 <user>

 <id>1</id>

 <name>root</name>

 </user>

 </users>

 <groups/>

 </accounts>

Using the API

• It seems like a lot of people are using curl with bash scripts

• There are several libraries that interface with the API

• RubyJSS

• PythonJSS

• We don’t really use Ruby and PythonJSS isn’t maintained (and it had a high
learning curve)

• So we reinvented the wheel

Design Goals

• Easy to use and understand

• Minimal maintainance

• Limit the scope

• Take shortcuts and do things “wrong” if it helps meet our goals

• This mainly means that we aren’t creating Python objects for everything, it’s
all just Python dictionaries (PythonJSS created objects for everything)

History

• Sam Forester wrote the foundation code before he took another job

• I helped Sam with the goals so I was already familiar with the project

• But I didn’t understand the Jamf API at all

• It was hardcoded for the Marriott Library’s needs

• I kept most of the code but also started over

• Tony Williams (github.com/honestpuck) gave us key contributions at the start
to get us going in the right direction

What Have We Made?

• jamf/api.py

• jamf/records.py

• jctl

• CLI CRUD (writing this taught me the Classic API)

• pkgctl

• CLI package promotion

• Note: Runs on Linux and macOS

jamf/api.py

• HTTP get/post/update/delete methods

• Convert between XML and Python dictionaries

• Requires knowledge of the Jamf API

• Bearer token support

• Stores password in keyring (e.g. macOS keychain)

jamf/records.py

• Generic records classes with easy and common CRUD methods

• Much less knowledge needed

• Supported record types is limited

pkgctl
CLI package promotion

• Interactive promotion

• DEMO

jctl
CLI CRUD

jctl

jctl policies

jctl policies -r "Dropbox.*ing.*Test"

jctl policies -r "Dropbox.*ing.*Test" -l

jctl policies -r "Dropbox.*ing.*Test" -p general/category

jctl policies -u general/category=Hi

jctl
CLI CRUD

jctl categories

jctl categories -d

jctl categories -c Hi

jctl policies -u general/category=Hi

jctl policies -s general/category==Hi

jctl policies -s general/category==Hi -d

api.py

python3

import jamf

api = jamf.API()

cats = api.get(‘categories’)

cat = cats[‘categories']['category'][0]

cat = api.get('categories/id/1')

cat['name'] = 'Bye'

api.put('categories/id/1', {'category': cat})

api.post('categories/id/0', {'category': {'id': '0', 'name': 'Bye'}})

records.py

python3

import jamf

jamf.Categories()

cat = jamf.Categories().recordsWithName(“Hi")[0]

cat.data["name"] = “Bye"

cat.save()

Resources

• https://example.com:8443/api

• https://github.com/univ-of-utah-marriott-library-apple/python-jamf

• https://github.com/univ-of-utah-marriott-library-apple/python-jamf/wiki

• https://pypi.org/project/python-jamf/

• https://github.com/univ-of-utah-marriott-library-apple/jctl

• https://github.com/univ-of-utah-marriott-library-apple/jctl/wiki

• https://pypi.org/project/jctl/

https://example.com:8443/api
https://github.com/univ-of-utah-marriott-library-apple/python-jamf
https://github.com/univ-of-utah-marriott-library-apple/python-jamf/wiki
https://pypi.org/project/python-jamf/
https://github.com/univ-of-utah-marriott-library-apple/jctl
https://github.com/univ-of-utah-marriott-library-apple/jctl
https://pypi.org/project/jctl/

Questions?

