jctl and python-jJamf

James Reynolds, January 2023

Agenda

 The problem with Jamf

* The Jamf API

* (Goals and history of the python-jamf
* python-jamtf, jctl, pkgctl

What is Jamf?

 MySQL database
 Tomcat Server
 Java WAR app

* Angular front end (single page app)

* The front end is the biggest problem ROOT.war

» |Lots of scrolling and clicking

What Does Jamf Do?

 Package assignment and distribution
 Jamf features that can install packages
« Jamf Policies
« Jamf Patch Management
o Jamf Prestage Enroliment

e Demo

Jamf Policies

* |nstalls packages to “scoped” computers
* By design Jamf policies only run “once per computer”
* Erratic distribution because of common errors
* Workaround
* Run policies “ongoing”
e Scope the policy to a smart group
* This complicate everything and slows the server

e Demo

Jamf Patch Management

 Makes distributing packages really easy
* This wont install an application
 Will only upgrade it if it’s already installed
* Works great with Self Service otherwise...
 Jamf policies are still required!
» Just increases the number of steps to “promote” a package!

e Demo

Staging

* You have to have a smart group, a regular policy, and a patch policy for each
application

1 smart group, 1 policy, 1 patch policy

 Multiple stages (dev, testing, and prod) multiply the number above
o 2 stages =2 smart groups, 2 policies, 2 patch policies
* A total of 6 things to edit for each package

e Demo

Solution: Jamf Classic API

 The Java Webapp powers the AP
* There are 2 API’s and they don’t overlap very much
e Jamf Pro AP|
e Classic API (“classic” means it was their first attempt at an API)
 Most of what we want to do is in the Classic API

 Jamf is not going to develop the Classic APl more

* There’s problems with the JSON output?

What is OpenAPl/Swagger

e https://www.openapis.org/

 OpenAPl is a way to describe how to interact with an API

* The definition is a JSON file
» Create server and client code just from a Swagger file

* Unfortunately, the Jamf Classic API doesn’t actually conform to the

standard so we couldn’t get the auto-generated client to work (or maybe
we just didn’t know what we were doing)

https://www.openapis.org/

Jamf’s Classic APl Swagger File

33,691 lines

“paths": {
"/accounts": A
Ilgetll: _{

"summary': "Finds all accounts",

"parameters": [],

"produces": |
"application/xml",
"application/json”

I,

"responses": {
||2®®||: {
"description”: “OK",

curl -X GET "http://example.com/JSSResource/accounts" -H "accept: application/xml"

Jamf’s Classic APl Swagger File

33,691 lines

"definitions": {
"account": {
"type": "object",
"properties": A
Ilidll: {
"type'": "integer",
"example': 1

¥

"name": <
“type"”: "string",
"example”: "John Smith",
"description”: "Name of the account”

I

Jamf’s Classic APl Swagger File

The result

II1.®II IIUTF_8II

Using the API

* |t seems like a lot of people are using curl with bash scripts
* There are several libraries that interface with the API
 RubyJSS
 PythondSS

 We don’t really use Ruby and PythondSS isn’t maintained (and it had a high
learning curve)

e So we reinvented the wheel

Design Goals

» Easy to use and understand

 Minimal maintainance
 Limit the scope
* Jake shortcuts and do things “wrong” if it helps meet our goals

* This mainly means that we aren’t creating Python objects for everything, it’s
all just Python dictionaries (PythondSS created objects for everything)

History

« Sam Forester wrote the foundation code before he took another job
* | helped Sam with the goals so | was already familiar with the project
 But | didn’t understand the Jamf APl at all

* |t was hardcoded for the Marriott Library’s needs

* | kept most of the code but also started over

* Tony Williams (github.com/honestpuck) gave us key contributions at the start
to get us going in the right direction

What Have We Made?

python-jamf 0.8. 3 jctl 1.1.19

e jamf/apiipy | PYRUOIGHITES.S -

...

e jamf/records.py
o |ctl

 CLI CRUD (writing this taught me the Classic API)
* pkgctl

* CLI package promotion

e Note: Runs on Linux and macOS

jamf/api.py

« HTTP get/post/update/delete methods
 Convert between XML and Python dictionaries
 Requires knowledge of the Jamf API

 Bearer token support

o Stores password in keyring (e.g. macOS keychain)

jamf/records.py

* (Generic records classes with easy and common CRUD methods
 Much less knowledge needed

e Supported record types is limited

pkgctl

CLI package promotion

e |[nteractive promotion

« DEMO

jctl

CLI CRUD

jctl

jctl policies

jctl policies -r "Dropbox.*ing.*Test"

jctl policies -r "Dropbox.*ing.*Test" -1

jctl policies -r "Dropbox.*ing.*Test" -p general/category

jctl policies -u general/category=H1

jctl

CLI CRUD

jctl categories

jctl categories -d

jctl categories -c Hi

jctl policies -u general/category=H1i
jctl policies -s general/category==H1

jctl policies -s general/category==H1 -d

apl.py

python3

import jamf

apli = jamf.API()

cats = api.get(‘categories’)

cat = cats[‘categories']['category'][0]

cat = api.get('categories/1d/1")

cat['name’'] = 'Bye'

apl.put('categories/1d/1"', {'category': cat})
apl.post('categories/1d/0', {'category': {'1d': '0@', 'name': 'Bye'}})

records.py

python3

import jamf

jamf .Categories()

cat = jamf.Categories().recordsWithName(“H1")[0]
cat.datal "name"] = “Bye"

cat.save()

Resources

e https://example.com:8443/api

o https://github.com/univ-of-utah-marriott-library-apple/python-jamf

e https://github.com/univ-of-utah-marriott-library-apple/python-jamf/wiki

o https://pypi.org/project/python-jamft/

o https://github.com/univ-of-utah-marriott-library-apple/jctl

o https://github.com/univ-of-utah-marriott-library-apple/jctl/wiki

o https://pypi.org/project/|ctl/

https://example.com:8443/api
https://github.com/univ-of-utah-marriott-library-apple/python-jamf
https://github.com/univ-of-utah-marriott-library-apple/python-jamf/wiki
https://pypi.org/project/python-jamf/
https://github.com/univ-of-utah-marriott-library-apple/jctl
https://github.com/univ-of-utah-marriott-library-apple/jctl
https://pypi.org/project/jctl/

Questions?

